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Abstract. In this paper we derive a mean-field expression for the Helmholtz f n x  energy of 
the extended Hubbard model with on-site repulsion and longer range attraction in the 
atomic limit. The mean-field free energy is exact in the infinite-dimensional and long- 
range limits and reduces to the exact ground state energy at  T=O. Implications for the 
phase diagram of the extended Hubbard model are discussed. 

1. Introduction 

The extended Hubbard model has been the subject of intense study 11-31 as a model 
for high-temperature superconductivity. The Hamiltonian is given by 

where ch (c~) is the creation (annihilation) operator for particles with wavevector k, 
kinetic energy and spin U= t or J , n, is the number operator for particles on site i 
with spin 0, nt = n, + n,.?, U is the on-site interaction strength and Jji measures the 
strength of the longer-range interaction. 

In [l-31 the thermodynamic phases of the extended Hubbard model are studied by 
comparing various mean-field approximations. The validity of these approximation 
schemes has not, however, been thoroughly investigated for lattice fermicsn models 
such as (1.1). 

For instance, it would be of great interest to establish a comprehensive mean-field 
theory for these systems which is exact in the infinite-dimensional limit and/or the 
long-range limit of Kac potentials where it is~known that lattice spin models approach 
their well known mean-field theories [4]. Limited exact results have been obtained by 
Vollhardt [5] and others [6] in high spatial dimension but as shown in a recent paper 
[7] even in the simple case of spinless fermions with an attractive nearest-neighbour 
interaction there can be no simple mean-field theory which is exact in the infinite- 
dimensional limit. 

We leave the question of the  validity of mean-field theories for the extended 

, 
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Hubbard model (1.1) to future publications. In this paper we concentrate on the 
atomic h i t  ( E ~ O )  of (l.l), i.e. 

R J Bursill and C I Thompson 

i i # j  

We derive a mean-field expression for the Helmholtz free energy of (1.2) and show (in 
the appendix) that this expression is exact in the infinite-dimensional limit and the 
long-range limit of Kac potentials. Also in rhe T= 0 limit the mean-field free energy 
reduces to exact ground-state energy. 

We note that (1.2) is simply the Hamiltonian of a classical, two-component lattice 
gas. We consider the case where U>O and 

Jij =j(lli - ill) (1.3) 

where j ( x )  is a positive, monotone decreasing function. That is, the on-site term is 
repulsive and the longer-range term is attractive. We also scale units so that 

CJii=l. 
i 

(1.4) 

Finally we note that in the hard-core limit ( U + m )  (1.1) has been put forward as a 
lattice-gas model of liquid He3 [8]. 

In the following section we derive the mean-field expression for the Helmholtz free 
energy of (1.2). The critical temperature is derived and the ordered state (below 
criticality) is characterized and interpreted. In section 3 these results are discussed in 
the context of the extended Hubbard model. 

2. Mean-field theory 

2.1. Helmholtz free energy and the uariational principle 

We consider (1.2) on a d-dimensional hypercubic lattice with volume V =  Ld. The 
grand canonical partition function is given by 

(2.1) %=Tr e-#(Z-IrN) 

where p= IlkT with k Boltzmann's constant and T the absolute temperature, p is the 
chemical potential and N is the number operator. 

The thermodynamic potential is defined by 

x= v-1 log 9 

where the equation 

(2.3) 
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provides a relationship between the (average) particle density n and the chemical 
potential where () denotes the thermodynamic average defined by 

(Se) =T'Tr See-#'. (2.4) 

v=l im fp-dnb). (2.5) 

Withy and x considered as functions of n and T the Helmholtz free energy is: given by 

V-00 

A variational uppkr bound can be generally obtained by writing X in the form 

X = Y e 0  + Ye, (2.6) 
with Xo, the reference Hamiltonian, chosen so that the reference grand canonical 
partition function 

(2.7) G& =Tr e-B&-P.y) 

can be calculated easily but is also representative of the basic physics of the system. 
With 9 replaced by % in (2.1) one obtains the reference thermodynamic potential 

a and the corresponding reference free energy 

qo=lim f p -xo ln~)  (2.8) 
V-W 

where in the equation (2.3) for n, the thermodynamic average is taken with respect to 
the reference system, i.e. 3 and X in (2.4) replaced, respectively, by G& and Yeo. 

It follows from Jensen's inequality that 

y s y o +  lim (X,)dnV=ymf (2.9) 
V-e 

where (XJo denotes the average of XI with respect to the reference system. 

2.2. Reference Hamiltonian and the meamfield free energy 

We make the choice 

so from (1.2) and (2.6) we have 

%e, = - J;,nini. 
i#j 

With this choice of Xo,,Vmf a n d p  are easily calculated 

vmf= vo - n 
a=log( l  +2z+zZe'+') 

with yo determined by (2.8) and z = e b  given by 

ea" 
2-n z = - [n - 1 +{(n - + n(2 - n) 

(2.10) 

(2.11) 

(2.12) 
(2.13) 

(2.14) 
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The upper bound (2.9) can, however, be improved by noting that the exact free 
energy q, considered as a function of the specific volume u=lln,  must be C', 
monotone decreasing and concave [9]. +,,is C' but need not be monotone decreasing 
or concave. We thus define the (superior) upper bound 

q=s CE{q&=$~vw (2.15) 

where CE denotes the concave envelope. That is, as a function of U, qvw is the 
greatest, C', monotone decreasing, concave function which is bounded above qd. In 
the appendix we show that equality between vw and is actually achieved in the 
infinite dimensional and Kac limits. 

We denote the concave envelope by qvw because in the U= 0 case qvw reduces to 
the lattice gas version of the Van der Waals-Maxwell free energy [9]. In the sequel we 
shall say that qmr is stable if it is monotone decreasing and concave in U. In such cases 
qw=qmf for all U. 

2.3. Critical temperature 

To determine where qmr is stable we calculate its derivatives with respect to U. The 
mean-field pressure is defined by 

A routine calculation yields 

Pmr=Po-nz 
where 

(2.16) 

(2.17) 

(2.18) 

Clearly qmr is stable if and only i fpmf is positive and monotone decreasing in U. It is 
easily established that pmr is positive and monotone decreasing if v is sufficiently small 
or large. It follows that Vmr is stable if and only if pmr has no turning points. 
Differentiating (2.17) we find that the condition for pd to have turning points is 

or, alternatively 

u=%Bcl) 
where 

(2.19) 

(2.20) 

1 1 +(I -n)(e-x- 1)I{(n- 1)*+n(2-n) e-?"* -1  
(2.21) 1 .  F(n,n)=2x - [2-n+ n-l+{(n-1)*+n(2-n) e-3"' 

PlotsofFversusnforvariousvaluesofxaregiveninfigure 1. F(2-n,n)=F(n,x) 
so turning points of pmr occur in pairs equally spaced about n = 1. F is monotone 
increasing in n on [O, 11 for OSnS21og2. Forx>2log2 Fisnot  monotone on [0,1] 
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Figure 1. F(n,  x )  and G(n, x )  (dashed) versus n for various values of x 

but takes on a maximum at a density which we denote by n*(x) 
( ~ z F / ~ n z ( l , x ) = ~ ( e " " - 2 )  vanishes when x = 2  log2.). 

We make the definition 

F,&) = max F(n,  x) 
0 4 n r t  

0 S x S  2 log 2 
= [ ;::;;), x )  x > 2  log2. (2.22) 

F , ( x )  is monotone increasing in x. It follows that there is a well defined critical 
temperature T. above whichp,, has no turning points (and hence qJd is stable) defined 

(2.23) 
For T< T,, pmr may'have two or four turning points or, equivalently, qJmr may have 

two- or four inflexion points. We note that T,=+ at U=41og2/3 
(F(1,2log2)=4log2/3j. Using (2.22) then wesee that (2.23) reduces to 

by 
U = Fmz( U/ Tc) . 

U=& UTc)  (2.24) 
forOSU<4log2/3 and 

U=F(n*(U/T,), UT,) (2.25) 
for U>4 log 2/3. T, is graphed as a function of U in figure 2. We may define a critical 
density n, by 

0 s  U S 4  log 2/3 
U>4log2/3 

(2.26) 
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2.4.  The nature of the concaue envelope and the order parameter below cnticaliry 

In the case where ptmf has two points of inflexion, vw is obtained from a double 
tangent construction as shown in figure 3. 

R J Bursill and C J Thompson 

for U S  uI 

(2.27) 

for vz U, 
where = qm.Xul) and W ,  = vmXue) with U, and ug interpreted as the liquid and gas 
specific volumes, respectively. The region uI < U < ug in which vw < t/lmf is interpreted 
as the coexistence region. 

If v., has four points of inflexion then vW may be given by the simple double 
tangent construction (2.27) as shown in figure 4. On the other hand, a pair of double 
tangent constructions may be required as shown in figure 5, namely 

112s u s  u4 

FlgureZ. Phase diagram for the extended Hubbard model with on-site repulsion and 
longer-range attraction in the atomic limit including Tc and T: as functions of U. Shading 
indicates whether the concave envelope is a simple double tangent construction (light) or a 
double tangent construction pair (dark). 
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\ 
Figure 3. Double tangent construction for the mean-field free energy lyd in a case where 
lymt has two points of inflexion. 

The coexistence regions in this case are u4< U < ug and u2< U < U,. 

that 
When yjw is'given by (2.27) it can be shown by symmetry or by direct calculation 

n, =2 -ng (2.29) 

where n,- l lu ,  and ng= l lur  The equation determining ng is found to be 
U= G(n,, B v) (2.30) 

where 

1;. (2.31) 
n-1  

G(n,x) -Zx(n- l )  l)+tanh-' 
{ (n -  1)2+n(2-n)  

Plots of G versus n for various values of x are included in figure 1. Note that when yd 
has four points of inflexion there is a spurious solution of (2.30) that corresponds to 
the conuex envelope. A plot of the convex envelope is included in figure 4. 

We note that in the limit U+O (2.30) reduces to the well known Van der Waals 
equation for a lattice gas, namely 

(2.32) ng-  1 = tanhB(ng- 1). 

When I$, is given by (2.28) we again have symmetries 

n4= 2-n ,  (2.33) 

n3=2-n, (2.34) 
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where ni= l/ui. The equations determining nl and n, do not simplify to forms like 
(2.29) and (2.30) except in the limit U+m where we have 

n,= 1 -nl (2.35) 

R J Bursill and C J Thompson 

and 
2(n, - 1/2) = tanh,9(nt - 112). (2.36) 

It remains to determine which of the two forms, (2.27) or (2.28) gives the concave 
envelope when qmf has four points of idexion. It is found that when both construc- 
tions are possible (2.27) gives the concave envelope if 

(2.37) 

and (2.28) gives the concave envelope otherwise. We now characterize the form of the 
concave envelope below criticality. There are three regions of interest for U. 
1 OSUS4log2/3 

For O S  T i  T, q, is given by (2.27) even for low temperatures where qmf has four 
inflexions. 

For T just below T,, q,is given by (2.28), the simple construction (2.27) not being 
possible because (2.30) possesses no solutions. As T i s  decreased (2.30) develops 
solutions and both constructions, (2.27) and (2.28) are possible. As T passes 

2 4 log 2/3 < U<2 

I 
Figure4 Simple double tangent construction for the mean-field free energy lymr in a case 
where lyml has four points of inflexion. A convex envelope construction is also shown and 
corresponds to a spurious solution of the equation determining the gas and liquid specific 
volumes. 
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Figures. Pair of double tangent constructions for the mean-field free energy emf in a case 
where q~~ has four inflexions. 

through a critical value Tf the two constructions coalesce ie u2, u3-+l+*- ,  ,,-tu,’ 
andu,+u; asT+(T:)+.For T:<T<T,,ly,isgivenby(2,28).ForOsT<T:,W,, 
is given by (2.27), (2.28) not being possible. From (2.37) we see that the condition 
determining Tf is 

(2.38) 

A plot of T: versus U is included in figure 2. 

For Os T< T,, V, is given by (2.28) even though the simple construction is poss$Ie 
((2.30) has solutions) for low enough temperatures-at least for 2 s  (r<4 (figure 

In figure 2 we indicate by shading which of the two constructions, (2.27) (the 
simple double tangent construction) or. (2.28) (the double tangent construction pair) 
gives the concave envelope. The coexistence region in the (n, T )  plane is sketched in 
figure 6 for each of the regions of interest for U. 

Finally note that there is a well defined order parameter, ug-u, for O s U s  
4 log 2/3 and u3 - U, for U> 4 log 2/3, which vanishes as T- T; . 

2.5. Ground state energy estimates and physical interpretation of the condensed 
phases 

In order to determine the estimate of the ground state energy (the T=O limit of Vw) 
we begin by indicating why the, Vw at T-0 is given~by (2.27) for O~S U S 2  and by 
(2.28) for U>2. 

3 U 2 2  

1). 
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Fiyw6. The coexistence region (shaded) in the (n, n plane for the three regions of 
interest: (a) OSUS4log2/3,  (h) 4log2/3<U<2; and (c) U 3 2 .  In the light shaded 
regions the concave envelope is a simple double tangent construction (SDTC) and in the 
dark shaded regions the concave envelope is a double tangent construction pair (DTCP). 
T,(n), the density-driven critical temperature is the temperature which hounds the 
coexistence region. 
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.' 

Figure 6c. 

We note from figure 1 that (2.30) has solutions (the simple double tangent 
construction (2.27) is possible) for sufficiently small T as long as OSU<4. From 
(2.30) it can be shown that 

O<U<2 
%-[e-8 2 S U < 4  

e-z(I - Ul4)8 

(2.39) 

as T-0. Using (2.8), (2.12), (2.13), (2.14) and (2.39) we find that 

Ws--2(1 -U/4)+0(l/j3) (2.40) 
-2(1-U/4)+0(e-2'1-u'4)8) 0 < U < 2  

2 S U < 4  (2.41) 

as T-0. It follows from (2.27), (2.29), (2.39). (2.40) and (2.41) that the T=O limit of 
(2.27) is identically -2(1- U/4) for 0 s  U<4. 

On the other hand it is easily derived from (2.8), (2.12), (2.13) and (2.14) that 

W1-[ -2(1- U/4) + O(e-8) 

O S n s l  i-" U ( 1 - l h - n  l < n ~ 2  
(2.42) lim vmt= 

r-0 

so the limiting form of (2.27) only lies below 

lim y,Xn= 1) = - 1 
T-0 

if OS  US^. From (2.37) then, the ground state energy estimate is given by the T=O 
limit of (2.28) for U 2 2 .  It can be shown in such cases that us,  u z + l ,  u4-f  and 
u l + m  as T-0. 
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Combining the above results and using (2.28) and (2.42) we arrive at the ground- 
state energy estimate 

OSnS2 OSUG2 
O s n s l  

-2(l-U/4)+(1-U/2)(l/n-1/2) l < n S 2  
7-0 U>2. 

(2.43) 
Now the exact N-particle ground state has zero magnetization (N/2 up particles 

and N/2 down particles) if 0 U s  2, the N particles forming a tightly packed cluster of 
N/2 doubly occupied sites. 

If U>2 and N S V  then the ground state is again a tightly packed cluster but of N 
singly occupied sites with no specific magnetization. If N> V then at least N- V of the 
sites must be double occupied. The ground state consists of a tightly packed cluster of 
N- V double occupied sites, the rest of the sites being singly occupied again with no 
specific magnetization. 

It is easily established using (1.2) that the ground state energy estimate (2.43) 
equates to the exact ground state energy. We note that the ground state is a condensed 
state in that particles form a macroscopic cluster. For 0 S U S  2, the cluster is as tightly 
bound as possible-all occupied sites are doubly occupied. For U>2 however, double 
occupancies are energetically unfavourable, and the cluster is less tightly bound, 
taking up a greater volume. Clusters form as a result of the interaction being 
predominantly attractive. The on-site repulsion, if sufficiently strong, frustrates this 
process. 

From the exact ground state, we are naturally lead to an interpretation of the 
subcritical phases depicted in figure 2 and figure 6. Both are condensed states in that 
cluster formation occurs. The clusters are more tightly bound (consisting mainly of 
doubly occupied sites), however, when the concave envelope is a SDTC and less tightly 
bound (with double occupancies less favoured) when the concave envelope is a DTCP. 

3. Summary and discussion 

In this paper we have derived a mean-field expression for the Helmoltz free energy of 
the extended Hubbard model with on-site repulsion and longer-range attraction in the 
atomic limit. The mean-field theory is valid in the sense that it recovers the exact 
Helmholtz free energy in the d = and Kac limits as well as the exact ground-state 
energy. 

The relevance of this study is that the phase diagram (figure 2) the coexistence 
regions (figure 6) and the interpretation of the phases described in section 2.5 should 
apply to the extended Hubbard model when the couplings are strong compared with 
the kinetic energy. 

We may define the density-driven critical temperature TJn) as the temperature, for 
a given value of n, at which yw is non-analytic. The coexistence region is the region in 
the (n, T )  plane which lies below T&). We see from figure 6 that for U> (4 log 2/3) 
T.(n) exhibits non-monotonicity in n on [0,1], half filling (n = 1) being a local 
minimum as opposed to a global maximum for T,(n). For U>2 the half-filled ground 
state is actually non-ordered and the non-monotonicity of T,(n) is qualitatively similar 
to that observed in the mean-field studies of the extended Hubbard model [l-31 in the 
case where a spin-triplet pairing ansatz is employed in deriving a density-driven 
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critical temperature. Such non-monotonicity is qualitatively similar to the inuerse 
parabolic behaviour observed in the hole dependence of superconducting critical 
temperature of the cuprate superconductors [lo]. 

In future studies we will consider the question of the validity of mean-field theories 
for the extended Hubbard model where various pair correlations like those studied in 
[I] must be incorporated into the reference Hamiltonian. 
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Appendix. Exactness of the mean-field theory in the d= m limit and the long-range 
limit of Kac potentials 

To show that $.. equates to ?) in the d= 
mean-field lower bound for the grand canonical potential. Writing 

and Kdc limits we first derive an equivalent 

= - 2 J,,(n, - P )(q - P )  ( A 4  
.i#j 

we have (using (1.2), (1.4), (2.6) and (A.l)) 

~ l , = 2 p ~ + ~ p ' + ~ C n i r n i , .  ( A 4  

Applying Jensen's inequality we obtain 

2a%l e ~ p [ d ( ' % ) ~ d  (A.3) 

xs XI - P  v-l(ye,)o=xm,. ('4.4) 

xmt= Iog(1 +2ze28p+ z2 eiflPe-@u) -pp'+p(ii -p)? ('4.5) 

where is defined by (2.7). Using (2.1), (2.2). (2.7) and (A.3) we then have 

A simple calculation yields 

where 
zz e'P"(l + z e'BP ,-Su) 

fj..(n.) , 0- - 1 + 2) elPo + z? e4P~, e-/JO. ( A 4  

It is easily established that the lower bound xml. considered as a function of the 
decoupling parameter p, is optimized when 

p=ii. (A.7) 
From (A.5). (A.6) and (A.7) the Optimdlfugaciry-dr~uen mean-field lower bound for x 
is 

x2 xvw (A.8  
=max x,, 
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= log(l+ 2.2 ez6p+ z2 e46p e-69 -Bpz (A.lO) 

where p is the solution of 

2ze2BP(1+zeZ6pe-9 
p = 1 + Z2 ez6P + z2 e4PP 

(A.ll) 

which maximizes (A.10). 
We next determine an upper bound for x by means of the functional integral 

method. We consider theJji to be entries of a matrix J .  From (1.3) Jjj is real symmetric. 
We further assume that J is positive definite. Applying the standard functional integral 
representation [U] 

with (1.2) and (2.1) we obtain 

(A.12) 

(A.13) 

(A.14) 

Computing the trace and adding and subtracting a diagonal term to the exponent 
in (A.14) we arrive at 

where O < & < l  

and we have made use of (1.4). 
It then follows that 

9<eVxm Det(1- J l (1  - E ) )  (A.17) 

where 
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and we have used (A.12) assuming that the matrix,J-I/(l-&) is positive definite. 
This is indeed the case because from (1.3) J is cyclic and has eigenvalues 

(A.19) 

and hence (from (1.4)) the maximum eigenvalue of J is 1. 
Elementary differentiation establishes that 

xm = xw + (A.20) 

the subdominant term being independent of V. From (2.2), (A.17) and (A.20) then 

(A.21) xe,yW+ V-'logDet(l- J / ( 1  --E)) + U(&)  +U(V-'). 

Now it has been shown [12] that 

lim V-' log Det(l-J/(l --E)) 
V-.- 

vanishes in the infinite-dimensional limit (d+ m) and also in the Kac limit (y+O+) if 
I(,) is of the form 

q x )  =ydK(yx) (A.22) 

where K is a positive, integrable and monotone decreasing function. 
It follows from (AA) and (A.21) that x and xw equate in the d = m and Kac limits. 

It is a simple exercise to check that vW is the Helmholtz free energy corresponding to 
xw and hence that ly and ly, equate in the d = m and Kac limits. 
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